博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
Python语法基础之DataFrame
阅读量:5293 次
发布时间:2019-06-14

本文共 10148 字,大约阅读时间需要 33 分钟。

转载自https://blog.csdn.net/lijinlon/article/details/81676859

Python数据分析首先需要进行数据清洗处理,涉及到很多DataFrame和Series相关知识,这里对涉及到的常用方法进行整理,主要设计数据增减、变更索引、数值替换等。其中一些函数的参数并没有介绍齐全,可以通过参考pandas文档或者在编辑器输入方法+?查询(例如df.reindex?),实践是检验知识水平的最好途径。

import pandas as pdimport numpy as npdf = pd.DataFrame({'name':['James','Curry','James','Kobe','Wade'],                           'age':[31,30,31,35,38],                           'score':[18,25,18,17,15],                           'block':[5,2,5,3,2]},                           index = ['player1','player2','player3','player4','player5'])print(df)
age  block   name  scoreplayer1   31      5  James     18player2   30      2  Curry     25player3   31      5  James     18player4   35      3   Kobe     17player5   38      2   Wade     15

1 更改索引

创建一个新索引(行列)reindex:重新创建新索引,原有数据会根据新索引进行重排,如果索引值不存在,会引入缺失值,原有索引对应的值不会发生变化

# 设置inplace = True 可以直接在原dDataFrame上修改,否则会复制修改df_reindex = df.reindex(columns = ['name','age','block','score','reb'],                       index = ['player1','player2','player3','player4','player5','player6']                       )print(df_reindex)
name   age  block  score  rebplayer1  James  31.0    5.0   18.0  NaNplayer2  Curry  30.0    2.0   25.0  NaNplayer3  James  31.0    5.0   18.0  NaNplayer4   Kobe  35.0    3.0   17.0  NaNplayer5   Wade  38.0    2.0   15.0  NaNplayer6    NaN   NaN    NaN    NaN  NaN

重新给索引命名rename,可以结合字典给部分索引重新命名,或者结合相关函数对索引进行整体重新命名

# 用字典修改new_index = {'player1':'PLAYER1'}new_col = {'name':'Name','age':'Age'}df_rename_dict = df.rename(index = new_index, columns = new_col)print(df_rename_dict)
Age  block   Name  scorePLAYER1   31      5  James     18player2   30      2  Curry     25player3   31      5  James     18player4   35      3   Kobe     17player5   38      2   Wade     15
# 用函数修改df_rename_fun = df.rename(columns = new_col)print(df_rename_fun)
Age  block   Name  scoreplayer1   31      5  James     18player2   30      2  Curry     25player3   31      5  James     18player4   35      3   Kobe     17player5   38      2   Wade     15
# 用map函数修改,这种方法是直接在原DataFrame上修改df.columns = df.columns.map(str.title)df.index = df.index.map(str.upper)print(df)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15

将一列或者多列变为行索引 set_index

df_setlindex = df.set_index(['Name'])print(df_setlindex)
Age  Block  ScoreName                    James   31      5     18Curry   30      2     25James   31      5     18Kobe    35      3     17Wade    38      2     15

将两列作为索引,默认这些作为索引的列会从DataFrame中删除,设置 drop = False 可以将其保留

df_set2index = df.set_index(['Name', 'Block'], drop = False)print(df_set2index)
Age  Block   Name  ScoreName  Block                          James 5       31      5  James     18Curry 2       30      2  Curry     25James 5       31      5  James     18Kobe  3       35      3   Kobe     17Wade  2       38      2   Wade     15

将行索引变为DataFrame的一列 reset_index

df_rIdx = df.reset_index()print(df_rIdx)
index  Age  Block   Name  Score0  PLAYER1   31      5  James     181  PLAYER2   30      2  Curry     252  PLAYER3   31      5  James     183  PLAYER4   35      3   Kobe     174  PLAYER5   38      2   Wade     15

2 数据删除

主要包括多重形式下行列的删除

删除整列

用del删除,在原DataFrame上直接修改删除

用drop方法删除,返回删除后的复制版本,不会修改原DataFram

df2 = df.copy()print(df2)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15
# 用del方法删除del df2['Age']print(df2)
Block   Name  ScorePLAYER1      5  James     18PLAYER2      2  Curry     25PLAYER3      5  James     18PLAYER4      3   Kobe     17PLAYER5      2   Wade     15
# 用drop方法删除,默认axis = 0,设置axis=1才能删除列df2_drop = df2.drop(['Block', 'Score'], axis = 1)print(df2_drop)
NamePLAYER1  JamesPLAYER2  CurryPLAYER3  JamesPLAYER4   KobePLAYER5   Wade

删除整行

df3 = df.copy()print(df3)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15
# 默认drop参数axis=0,删除行df3_drop = df3.drop(['PLAYER1'])print(df3_drop)
Age  Block   Name  ScorePLAYER2   30      2  Curry     25PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15

删除重复行

重复判断 duplicated(),返回一个布尔型的Series,表示各行是否与前面重复,重复则显示True

df.duplicated()
PLAYER1    FalsePLAYER2    FalsePLAYER3     TruePLAYER4    FalsePLAYER5    Falsedtype: bool

该方法可以通过设置subset = [‘列名’]根据一列或多列对重复值进行判断,设置 keep=’last’使重复项最后一项显示False,其余为True

配合sum函数可以迅速判断,该行是否存在重复值,sum返回的数值即为重复行的数目

df.duplicated().sum()
1

还可以用Series的is_unique方法对单列是否有重复值进行判断,该方法能判断Series的values是否独立,没有重复则返回True

df['Name'].is_unique
False
df3_drop['Name'].is_unique
True

重复值的删除使用drop_duplicates方法,返回的是删除掉重复行的DataFrame,不会修改原DataFrame

# 依据全部列进行判断df_d = df.drop_duplicates()print(df_d)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15
# 依据设定的一列或多列进行判断,默认会保留第一个出现的值组合,传入keep = 'last'后会保留最后一个,传入inplace = True则会取代原DataFramedf_d2 = df.drop_duplicates(subset = ['Block'], keep = 'last')print(df_d2)
Age  Block   Name  ScorePLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15

包含缺失值的行/列删除

滤除缺失数据一般使用dropna,返回删除后的复制版本,不会修改原DataFrame

df_data = df.copy()df_data.iloc[1,2] =np.nandf_data.iloc[2] = np.nanprint(df_data)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER2  30.0    2.0    NaN   25.0PLAYER3   NaN    NaN    NaN    NaNPLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0
# 默认只要行内有一个NaN值,该行就会被删除data_drop = df_data.dropna()print(data_drop)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0
# 如果只想删除全部为NaN的行,可以传入 how = 'all'data_drop2 = df_data.dropna(how = 'all')print(data_drop2)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER2  30.0    2.0    NaN   25.0PLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0
# 如果像删除列,可以传入axis=1data_drop3 = data_drop2.dropna(axis = 1)print(data_drop3)
Age  Block  ScorePLAYER1  31.0    5.0   18.0PLAYER2  30.0    2.0   25.0PLAYER4  35.0    3.0   17.0PLAYER5  38.0    2.0   15.0

此外,dropna还有 (thresh=None, subset=None, inplace=False)三个参数,分别控制缺失值删除数目的阈值,根据subset指定列名的空值删除以及是否取代原DataFrame

3 数据替换

缺失值替换

缺失值替换可以采用fillna

# 直接替换全部为同一个值df_1 = df_data.fillna(0)print(df_1)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER2  30.0    2.0      0   25.0PLAYER3   0.0    0.0      0    0.0PLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0
# 也可以传入列名为键的字典为不同列替换为不同值df_dict = df_data.fillna({'Age':30, 'Block':10})print(df_dict)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER2  30.0    2.0    NaN   25.0PLAYER3  30.0   10.0    NaN    NaNPLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0
# 可以设置method= ‘ffill'或者method='bfill'分别为前后值填充df_m = df_data.fillna(method = 'ffill')print(df_m)
Age  Block   Name  ScorePLAYER1  31.0    5.0  James   18.0PLAYER2  30.0    2.0  James   25.0PLAYER3  30.0    2.0  James   25.0PLAYER4  35.0    3.0   Kobe   17.0PLAYER5  38.0    2.0   Wade   15.0

此外还有axis、limit、inplace参数分别设置轴、前后替换的阈值和是否替代

其他值替换

使用replace替换

# 利用列表实现将不同值替换为同一值 # 将Curry、kobe替换为Stephendf_replace = df.replace(['Curry','Kobe'], 'Stephen')print(df_replace)
Age  Block     Name  ScorePLAYER1   31      5    James     18PLAYER2   30      2  Stephen     25PLAYER3   31      5    James     18PLAYER4   35      3  Stephen     17PLAYER5   38      2     Wade     15
# 利用字典实现对不同值得不同替换df_reDict = df.replace({'Curry':'Stephen'})print(df_reDict)
Age  Block     Name  ScorePLAYER1   31      5    James     18PLAYER2   30      2  Stephen     25PLAYER3   31      5    James     18PLAYER4   35      3     Kobe     17PLAYER5   38      2     Wade     15
# 利用双列表实现对不同值的不同替换df_reList = df.replace(['Curry','Kobe'],['Stephen','Bryant'])print(df_reList)
Age  Block     Name  ScorePLAYER1   31      5    James     18PLAYER2   30      2  Stephen     25PLAYER3   31      5    James     18PLAYER4   35      3   Bryant     17PLAYER5   38      2     Wade     15

4数据索引

标签索引 loc

行索引

print(df)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15

列索引

# 单列df['Age']
PLAYER1    31PLAYER2    30PLAYER3    31PLAYER4    35PLAYER5    38Name: Age, dtype: int64
# 多列df[['Age', 'Name']]
Age Name
PLAYER1 31 James
PLAYER2 30 Curry
PLAYER3 31 James
PLAYER4 35 Kobe
PLAYER5 38 Wade
# loc选取df.loc[:, 'Name']
PLAYER1    JamesPLAYER2    CurryPLAYER3    JamesPLAYER4     KobePLAYER5     WadeName: Name, dtype: object

行列共同索引

df.loc['PLAYER2',['Age','Name']]
Age        30Name    CurryName: PLAYER2, dtype: object

位置索引 iloc

行索引

# 单行df.iloc[1]
Age         30Block        2Name     CurryScore       25Name: PLAYER2, dtype: object
# 列索引df.iloc[:,1]
PLAYER1    5PLAYER2    2PLAYER3    5PLAYER4    3PLAYER5    2Name: Block, dtype: int64
# 连续多列df.iloc[:, 1:3]
Block Name
PLAYER1 5 James
PLAYER2 2 Curry
PLAYER3 5 James
PLAYER4 3 Kobe
PLAYER5 2 Wade
# 列行同时索引df.iloc[0:2,2:4]
Name Score
PLAYER1 James 18
PLAYER2 Curry 25

通过逻辑选择

df_logic = df[df['Score']>17]print(df_logic)
Age  Block   Name  ScorePLAYER1   31      5  James     18PLAYER2   30      2  Curry     25PLAYER3   31      5  James     18

5数据排序

按照索引排序 sort_index

# 可以设置axis按照行列进行排序,并可以设置ascending悬着升序降序df_sort = df.sort_index(axis = 0, ascending = False)print(df_sort)
Age  Block   Name  ScorePLAYER5   38      2   Wade     15PLAYER4   35      3   Kobe     17PLAYER3   31      5  James     18PLAYER2   30      2  Curry     25PLAYER1   31      5  James     18

按照值进行排序 sort_values

可以设置ascending选择升序降序

df_sort2 = df.sort_values (by = ['Age', 'Score'])print(df_sort2)
Age  Block   Name  ScorePLAYER2   30      2  Curry     25PLAYER1   31      5  James     18PLAYER3   31      5  James     18PLAYER4   35      3   Kobe     17PLAYER5   38      2   Wade     15

转载于:https://www.cnblogs.com/twodoge/p/11346871.html

你可能感兴趣的文章
在16aspx.com上下了一个简单商品房销售系统源码,怎么修改它的默认登录名和密码...
查看>>
c++回调函数
查看>>
linux下Rtree的安装
查看>>
【Java】 剑指offer(53-2) 0到n-1中缺失的数字
查看>>
Delphi中ListView类的用法
查看>>
bzoj3110: [Zjoi2013]K大数查询 【树套树,标记永久化】
查看>>
[原创]Java 的传值小例子
查看>>
博客第一弹—聊聊HTML的那些事
查看>>
Mysql安装方法及安装问题解决
查看>>
Java动态代理的两种实现方式:
查看>>
PHP trait
查看>>
python 多线程并发threading & 任务队列Queue
查看>>
1_fbauto
查看>>
IO体系、集合体系、多线程、jdbc
查看>>
关于时间:UTC/GMT/xST/ xDT
查看>>
[51Nod1089] 最长回文子串 V2(Manacher算法)
查看>>
Asp.Net生命周期系列六
查看>>
php引用 =& 详解
查看>>
Codeforces 914D Bash and a Tough Math Puzzle (ZKW线段树)
查看>>
POJ 3009: Curling 2.0
查看>>